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RESUMO 

DE PAULA, K. G. F.  Sensor virtual de alvura em polpa branqueada de celulose baseado 

em Inteligência Artificial.   2022.  52 f.  Trabalho de conclusão de curso (MBA em Inteligência 
Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação, Universidade de 

São Paulo, São Carlos, 2022. 

 

Com a demanda crescente do consumo global de celulose branqueada, as indústrias deste setor 

têm sido cada vez mais demandadas a otimizarem seus processos para se manterem 

competitivas. A etapa de branqueamento é fundamental para alcançar as especificações exigidas 

pelos clientes. O atributo alvura da polpa de celulose é o principal entregável desta fase do 

processo, motivando assim a aplicação de inteligência artificial para predição deste tão 

importante atributo. Busca-se assim otimizar o consumo de químicos sem comprometer a 

qualidade do produto. Atualmente é utilizado um robô para efetuar a medição de alvura e outras 

características morfológicas da polpa de celulose. O resultado das análises é obtido a cada 30 

minutos, permitindo assim que o controle clássico do tipo feedback efetue as devidas correções 

para manter a alvura medida no valor desejado. Neste trabalho, propõe-se utilizar Aprendizado 

de Máquina para predição da alvura da polpa de celulose. A escolha dos atributos relevantes 

para a criação do modelo de predição, bem como o período de histórico em estudo, foi realizada 

em conjunto com operadores e engenheiros de processo, sendo posteriormente validada com o 

uso de algoritmos computacionais estatísticos. Para construção dos modelos preditivos foram 

utilizados diferentes tipos de algoritmos baseados em árvores de decisão, avaliados e 

comparados a acurácia obtida e outros indicadores de desempenho entre eles. Foram 

comparados os algoritmos Decision Tree, Random Forest, XGBoost e LightGBM.  Resultados 

experimentais indicam que algoritmos de Aprendizado de Máquina podem ser utilizados para 

gerar sensores virtuais de alvura eficientes. 

 

Palavras-chave: celulose; branqueamento; sensor virtual; alvura; inteligência artificial; 

aprendizado de máquina.  
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ABSTRACT 

DE PAULA, K. G. F.  Brightness virtual sensor based on Artificial Intelligence in pulp mill 

bleaching area.   2022.  52 f.  Trabalho de conclusão de curso (MBA em Inteligência Artificial 
e Big Data) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 

São Carlos, 2022. 

 

With the growing demand from the global consumption of bleached pulp, industries in this 

sector have been increasingly required to optimize their processes in order to remain 

competitive. The bleaching stage is essential to reach the specifications required by customers. 

The Brightness attribute of cellulose pulp is the main deliverable of this stage of the process, 

thus motivating the application of artificial intelligence to predict this very important attribute. 

The aim is thus to optimize the consumption of chemicals without compromising product 

quality. Currently, a robot is used to measure the brightness and other morphological 

characteristics of the cellulose pulp. The analysis results are obtained every 30 minutes, thus 

allowing the classic feedback control to make the necessary corrections to keep the measured 

brightness at the desired value. In this work, will be used Machine Learning to predict the 

brightness of cellulose pulp. The choice of relevant attributes for creating the prediction model, 

as well as the historical period under study, was carried out in conjunction with operators and 

process engineers, and subsequently validated using statistical computational algorithms based 

on decision tree. To build the predictive models, different types of algorithms were used, 

evaluated and compared the obtained accuracy and other indicators between them. Decision 

tree, Random Forests, XGBoost and LightGBM algorithms were compared. Experimental 

results indicate that Machine Learning algorithms can be used to generate efficient whiteness 

virtual sensors. 

 

Keywords: pulp; bleaching; virtual sensor; brightness; artificial intelligence; machine learning;  
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1 INTRODUÇÃO 

 

 Atualmente, de forma global, as indústrias de celulose e papel têm sofrido mudanças 

decorrentes de alterações no cenário industrial com forte influência da rápida evolução de 

tecnologias. Os desafios deste setor vão desde a qualidade de matérias primas, passando por 

considerações ambientais e alterações em tecnologias do processo industrial. O 

desenvolvimento e o aperfeiçoamento das tecnologias representam uma forte possibilidade de 

garantir a competitividade das fábricas de celulose e papel. 

O papel é produzido a partir de fibras celulósicas. A fabricação do papel consiste em 

criar uma superfície, a qual suas propriedades dependem das características das fibras 

utilizadas. Estas propriedades são definidas durante os processos de polpação e branqueamento 

[1]. Os fardos de celulose branqueadas de eucalipto são negociados como commodity, sendo 

assim, o preço destes depende fortemente de oscilações do mercado. Agregar valor, através da 

otimização da etapa de branqueamento, controlando características físico-químicas e estruturais 

das fibras, se torna uma alternativa para manter-se competitivo neste mercado. 

 

1.1 Sensor virtual de alvura baseado em Inteligência Artificial 

 

Vários problemas relacionados com o processo de produção da celulose são passíveis 

de serem otimizados e automatizados por meio do uso de Inteligência Artificial [2]. O problema 

que será tratado neste projeto é encontrado na etapa de branqueamento. Um dos principais 

motivadores para propor melhorias nessa etapa da fábrica é o fato dos químicos serem o maior 

custo de consumíveis do processo de fabricação, ficando atrás apenas da madeira e seguido do 

consumo de energéticos (combustíveis). 

O desafio é controlar a variável alvura na saída do reator do primeiro estágio do 

branqueamento, buscando a redução de variabilidade, permitindo assim operar com o valor 

desejado o mais próximo possível do limite inferior de especificação, otimizando por 

consequência a adição de químicos conforme ilustrado na Figura 1. Este estágio denomina-se 

A/D0 e possui essa terminologia pelo fato de o mesmo utilizar os produtos químicos ácido 

sulfúrico e dióxido de cloro. O controle de alvura é desafiador, visto que a adição de químicos 

é feita na entrada do reator e apenas mede-se o resultado da dosagem aplicada, por meio da 

medição da alvura, após um tempo prolongado de retenção da polpa de celulose. A medição da 
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alvura é realizada por um robô que coleta amostras de 30 em 30 minutos na entrada e na saída 

do reator. 

Para tornar o controle de alvura robusto, capaz de manter essa variável a mais próxima 

possível do limite inferior de especificação, a estratégia pensada foi desenvolver um modelo de 

predição baseado em Inteligência Artificial. Busca-se assim virtualizar o robô medidor de 

alvura, permitindo como consequência aumentar a frequência de aferimento da variável alvura 

e possibilitando ao controle realizar mais correções. 

 

Figura 1 – Efeito da redução de variabilidade da alvura 

 

Fonte: Próprio autor (2021). 

 

Para o problema estudado, foram propostos e comparados neste trabalho vários tipos de 

algoritmos de aprendizagem de máquina (AM), que foram avaliados em relação à acurácia, 

poder de generalização, bem como outras métricas de avaliação. Validação cruzada foi aplicada 

na avaliação dos algoritmos. 

 

1.2 Justificativa 

 

 O controle atual é feito por meio de um controlador clássico do tipo feedback que, 

devido às características já relatadas anteriormente, pode atuar tardiamente para correção da 

alvura. Como consequência, pode-se ocorrer o excesso ou falta de químicos, além do risco de 

desclassificação do produto final em função do mesmo não atender às especificações de alvura 

do cliente. 
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A proposta desse projeto é investigar o desenvolvimento de um sensor virtual de alvura 

utilizando algoritmos de Aprendizado de Máquina (AM) supervisionados. Espera-se que o 

sensor virtual permita predizer a alvura na saída do reator a cada 1 minuto, possibilitando ao 

controlador a correção da dosagem de químicos no processo de forma antecipada (feedforward) 

e, portanto, mais otimizada. Ficará a cargo do atual controle do tipo feedback fazer pequenas 

correções remanescentes de eventuais erros do modelo de predição. 

Outro benefício esperado com o sensor virtual é que ele sirva de cross check do sensor 

real (robô), permitindo encontrar possíveis defeitos embrionários e informando inconsistências 

nas variáveis de entrada que o modelo utiliza, no sensor real ou até mesmo indicando um erro 

do modelo utilizado. Essa estratégia é muito interessante porque permite identificar defeitos no 

sistema antes que ele se agrave ao ponto de gerar uma falha e assim provocar perdas maiores 

no processo como consumo elevado de químicos ou até mesmo um produto fora da 

especificação (desclassificado) na etapa final do processo. 

Um benefício adicional é utilizar apenas o sensor virtual em caso de falha do sensor real 

(robô) por tempo prolongado. Tal uso é especialmente interessante pois a reposição de peças 

do robô é bastante cara e lenta devido ao fato de serem importadas da Finlândia. Dessa forma 

não será necessário desligar o controlador durante o período de manutenção, o que provocaria 

alto consumo de químicos. Além disso, o uso do sensor virtual proporcionaria também evitar o 

armazenamento de peças do robô de custo elevado em estoque. 

A aplicação de algoritmos de AM poderá permitir um processo de controle de alvura 

mais robusto, eficiente, entregando para o cliente final uma alvura a mais próxima possível do 

limite inferior de especificação, e consequentemente tendo um menor gasto com produtos 

químicos e com manutenção dos robôs. 

 

1.3 OBJETIVOS 

 

A Hipótese investigada neste trabalho é que “com um conjunto de treinamento 

suficientemente grande para o processo de branqueamento, o algoritmo de AM supervisionado 

conseguirá predizer a alvura da polpa de celulose na saída do estágio A/D0 do branqueamento”. 

Espera-se que o erro de predição para os conjuntos de teste seja suficientemente baixo para 

conferir robustez ao processo, permitindo desenvolver um sensor virtual capaz de ser utilizado 

em uma estratégia antecipativa (feedforward) somada à estratégia feedback do sensor real 

(robô), reduzindo assim a variabilidade do controle de alvura.  
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O objetivo principal do trabalho é, portanto, desenvolver um sensor virtual inteligente 

para a alvura da polpa de celulose na saída do estágio A/D0 de branqueamento. Espera-se que 

o sensor virtual inteligente permita trabalhar bem mais próximo do limite inferior de 

especificação e consequentemente, obter-se a minimização do consumo de produtos químicos. 

 

1.3.1 Específicos 

 

 A principal questão de pesquisa que será tratada neste projeto é: "É possível utilizar 

algoritmos de AM, como descritos anteriormente, para a construção de um sensor virtual de 

alvura eficiente que permitirá otimizar o processo de branqueamento?". Outra questão que será 

tratada é: “Qual algoritmo de AM representará o melhor desempenho para o problema 

proposto?” 

 Para responder a essas perguntas neste trabalho são utilizados indicadores de 

desempenho para avaliar a acurácia e o poder de generalização dos modelos obtidos pelos 

diferentes algoritmos. Visando obter um alto desempenho na estratégia de controle, o principal 

indicador de desempenho, bem como a meta de acurácia estipulada para o modelo é o RMSE 

(root mean squared error) menor que 0,3%. 

 Para avaliar o poder de generalização do modelo é utilizado o indicador de desempenho 

de coeficiente de determinação, R2 no processo de validação cruzada obtido através do 

algoritmo K-fold, com uma meta superior a 80%.  
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2 FUNDAMENTAÇÃO TEÓRICA 

 

O processo produtivo de celulose branqueada é divido em duas grandes ilhas, sendo a 

primeira a parte florestal e a segunda a extração da celulose (industrial). A área florestal tem 

como objetivo o fornecimento de madeira apropriada para a extração de celulose. Essa ilha 

abrange desde o processo de clones das mudas de eucalipto em viveiros, passando pelo plantio 

e finalizando na colheita e descascamento das toras de madeira após cerca de 6 a 8 anos de 

cultivo. 

 

2.1 Processo Kraft de celulose branqueada 

  

    A área industrial tem início na fase de preparação de cavacos, sendo este produzido por 

meio da trituração das toras de madeira que são a matéria prima oriundas das florestas de 

eucalipto. Este microprocesso é puramente mecânico, onde ocorre a picagem das toras e o 

armazenamento. Os cavacos provenientes da picagem possuem dimensões especificadas e são 

armazenados na pilha, a qual alimenta o digestor [3]. Os cavacos fora de especificação servem 

de combustível e são direcionados para a pilha de alimentação da caldeira de biomassa, que 

possui a função de gerar vapor de alta pressão (~92 bar) o qual, posteriormente, será utilizado 

em um turbo gerador para geração de energia elétrica. 

 Os cavacos serão utilizados no digestor, com a finalidade de promover o cozimento 

dessa madeira, utilizando produtos químicos altamente alcalinos em conjunto com vapor de 

média (~12 bar) e baixa pressão (~4 bar), obtendo após um tempo de retenção a polpa marrom 

de celulose. Em seguida essa polpa é lavada, deslignificada e depurada, sendo entregue à etapa 

de foco deste trabalho, o branqueamento. Uma vez tendo sido branqueada a polpa de celulose, 

se faz necessário promover a remoção de água para viabilizar o transporte até os clientes. Essa 

etapa é denominada secagem, possuindo microprocessos como formação de folha, prensagem, 

secagem a vapor de baixa pressão, formação de fardos e embalagem final. Está ilustrado na 

Figura 2 uma planta de produção de celulose com as etapas do processo. 
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Figura 2 – Visão geral de um processo produtivo de celulose branqueada. 

 

Fonte: Modificado de ANDRITZ – GMBH (2007). 

 

2.2 Processo de branqueamento da polpa 

 

 O objetivo do branqueamento da polpa é dar continuidade à deslignificação iniciada no 

digestor e, por meio de oxidantes, remover qualquer lignina residual que permaneça após a 

etapa de cozimento. Essa lignina residual não é removida durante o processo de cozimento, se 

assim fosse, comprometeria o rendimento e as propriedades físico-químicas das fibras [4]. 

A etapa do branqueamento tem por finalidade também melhorar o brilho e a limpeza da 

celulose para atender às exigências dos clientes. As variáveis alvura e sujidade são as mais 

relevantes para o atendimento das especificações de venda. A alvura da polpa é medida como 

a capacidade de uma folha de celulose refletir a luz direcionada a ela e isso é afetado tanto pela 

absorção quanto pela dispersão da luz na folha. O comprimento de onda utilizado para essa 

medição é de 457 nm, comparado à medida padrão de refletância do óxido de magnésio, 

gerando um percentual de alvura ISO [5]. 

O processo de branqueamento é comumente dividido em estágios, primeiramente para 

promover a remoção da lignina residual ainda presente na polpa de celulose, e posteriormente 

promover o seu alvejamento gradual, minimizando as perdas decorrentes da degradação das 

fibras proveniente do ataque químico provocado pelos alvejantes. A etapa de branqueamento 
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da fábrica em estudo possui 4 estágios sequenciais tratando a polpa nos reatores, fazendo o uso 

de produtos químicos e lavando em seguida nos lavadores para remoção de compostos químicos 

remanescentes da reação. Os estágios do branqueamento são: A/D0, EOP, D1 e P, sendo as 

abreviaturas em função dos produtos químicos utilizados conforme ilustrado na Figura 3, onde 

é possível observar também a medição da alvura efetuada de forma automatizada por robôs em 

cada um dos estágios. A alvura destacada em vermelho refere-se à alvura a ser predita. 

 

Figura 3 – Visão geral do branqueamento. 

 

Fonte: Modificado de ANDRITZ – GMBH (2004). 

 

 O estágio A/D0 tem a finalidade de remover o residual de lignina, utilizando para isso 

os produtos químicos dióxido de cloro e ácido sulfúrico, bem como adição de vapor de média 

pressão e tempo de residência em reator. Essa remoção da lignina é indiretamente medida 

através do número Kappa obtido por um robô. Após cada estágio ocorre a lavagem da polpa de 

celulose para remoção dos químicos residuais e minimização do consumo elevado de químicos 

da etapa seguinte, por conta do pH que em cada estágio alterna entre ácido e alcalino. O ganho 

de alvura obtido nessa etapa é da ordem de 15% ISO, deixando o estágio com uma alvura de 

polpa em torno de 75% ISO, como mostrado na Figura 4. 

 

Figura 4 – Estágio A/D0 do branqueamento. 

 

Fonte: Modificado de ANDRITZ – GMBH (2007). 
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 Já no estágio EOP, são utilizados os químicos soda cáustica, oxigênio e peróxido de 

hidrogênio, com o objetivo de extrair os compostos clorados do estágio anterior e elevar a alvura 

da polpa para em torno de 85% ISO, como mostrado na Figura 5.  

 

Figura 5 – Estágio EOP do branqueamento. 

 

Fonte: Modificado de ANDRITZ – GMBH (2007). 

 

Nos estágios seguintes a alternância de produtos químicos ocorre novamente, com 

dióxido de cloro e ácido sulfúrico no estágio D1, elevando-se a alvura ao patamar próximo de 

88% ISO. No último estágio, denominado P, utiliza-se o peróxido de hidrogênio juntamente 

com a soda cáustica, tendo como principal função estabilizar a alvura, prevenindo a reversão 

precoce desta no produto final e elevando-a para em torno de 90% ISO. 

Todos os estágios possuem reatores químicos com a função de promover o tempo de 

residência para que ocorram as reações químicas completas necessárias para o processo de 

deslignificação e alvejamento da polpa de celulose. Este tempo varia com a produção do 

branqueamento, oscilando entre 2h e 5h. 

 

2.3 Regressão e principais algoritmos de aprendizado de máquina baseados em árvore de 

decisão 

 

 Em uma investigação científica se formulam hipóteses sobre relacionamento entre 

variáveis independentes ou de entrada (x) que possam explicar totalmente ou parcialmente uma 

variável dependente ou variável de saída (y), podendo assim formar um modelo de regressão a 

fim de realizar predições de y com base em valores conhecidos de x. Este modelo pode ser 

considerado linear, quando as variáveis possuem um relacionamento linear ou 
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aproximadamente linear entre elas, ou pode ser considerado não linear quando as variáveis não 

possuem um relacionamento linear [6]. O modelo linear de regressão pode ser aplicado quando 

todas as variáveis de entrada forem quantitativas. 

São utilizadas algumas medidas de acurácia para avaliação do modelo, tais como o 

coeficiente de determinação (R²), erro médio absoluto (MAE), erro médio quadrático (MSE) e 

raiz quadrada do erro médio quadrático (RMSE), conforme as equações a seguir. Essas medidas 

pontuam a disparidade entre a saída predita e a saída real sendo o RMSE a principal medida 

escolhida como alvo para este trabalho. O RMSE é interessante porque penaliza mais 

severamente valores discrepantes em relação à média. 

 

𝑅2 = 1 − 
∑ (𝑦𝑖−𝑦̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

         (01) 

 

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑦𝑖 − 𝑦̂|𝑛

𝑖=1         (02) 

 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂)2𝑛

𝑖=1         (03) 

 

𝑅𝑀𝑆𝐸 =  √ 
1

𝑛
∑ (𝑦𝑖 − 𝑦̂)2𝑛

𝑖=1         (04) 

 

Sendo que n é o número de instâncias, 𝑦𝑖 é o i-ésimo valor real, 𝑦̂𝑖 é a i-ésima predição 

e 𝑦̅ é o valor médio de 𝑦. 

 

As árvores de decisão (Decision Tree) são métodos de aprendizado de máquina para 

inferência de regras de decisão simples que recebe um vetor com n valores (features) como 

entrada e retorna uma decisão (saída). É um algoritmo de aprendizado de máquina 

supervisionado utilizado para classificação ou regressão sendo uma das abordagens de 

modelagem preditiva mais usadas em estatística, mineração de dados e aprendizado de 

máquina [7]. Esse algoritmo, quando aplicado em problemas de regressão, tem como estrutura 

folhas, que representam rótulos de classe, e ramos que representam conjunções de 

características que levam a esses rótulos de classe [7]. 

As Decision Trees, as quais a variável dependente pode assumir valores contínuos, são 

chamadas de árvores de regressão e estão entre os algoritmos de aprendizado de máquina mais 
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populares devido à sua inteligibilidade, simplicidade e facilidade de implementação. Porém, 

como desvantagem, tem uma forte propensão ao sobre ajuste (overfitting) [8]. 

Os algoritmos de construção dessas árvores costumam funcionar de cima para baixo, 

selecionando em cada etapa uma variável que melhor divide o conjunto de itens. Diferentes 

algoritmos utilizam métricas distintas para mensurar o melhor modelo, medindo a 

homogeneidade da variável de saída dentro dos subconjuntos. Alguns exemplos de métodos 

utilizados na construção das árvores são a impureza de Gini e o ganho de informação. Essas 

são aplicadas em cada subconjunto de dados e os resultados são combinados para fornecer uma 

medida da qualidade da divisão [8]. 

Assim como a Decision Tree, o algoritmo de Random Forest é um algoritmo de 

aprendizado de máquina supervisionado utilizado para classificação ou regressão que possui a 

característica de combinar a simplicidade das Decision Trees com a flexibilidade e 

aleatoriedade para melhorar a precisão. Isso ocorre, pois as Decision Trees são propensas a 

sobre ajustarem (overfitting), na medida em que o tamanho da árvore/complexidade aumenta 

com os dados de treinamento, podendo prejudicar assim o poder de generalização do modelo 

[9]. 

Na Random Forest, múltiplas árvores são criadas pelo algoritmo utilizando-se de 

métodos de junção (ensemble) dos diferentes atributos e conjunto de dados contidos na base de 

dados de forma aleatória, ao invés da seleção partir do cálculo de impureza usado como critério 

em uma Decision Tree simples. Essa estratégia tende a reduzir os efeitos do sobre ajuste. 

O número de árvores é definido através de um hiperparâmetro chamado número de 

estimadores, utilizando o resultado de cada modelo na definição de um único resultado, obtendo 

assim um valor final único (ex. por média). Em comparação com a Decision Tree simples, a 

Random Forest exige maior poder computacional, diretamente proporcional ao número de 

estimadores definido. Entretanto uma das maiores vantagens dessa floresta é o aumento da 

robustez quanto ao sobre ajuste [10]. 

 O nome XGBoost vem de eXtreme Gradient Boosting, e representa uma categoria de 

algoritmos baseada em árvores de decisão com aumento de gradiente (Gradient Boosting). 

Aumento de gradiente significa que o algoritmo usa o artifício de Gradient Descent para 

minimização da perda (loss) propiciando que novos modelos sejam adicionados. O princípio 

do Gradient Boosting é a capacidade de combinar resultados de muitos classificadores de vieses 

fracos, tipicamente Decision Trees, que se combinam para formar algo parecido com um “forte 

comitê de decisão” [11]. 
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Este algoritmo é altamente adaptável, uma vez que possui um grande número de 

hiperparâmetros passíveis de sintonia. É possível ajustar adequadamente o XGBoost para os 

mais variados tipos de problemas. Este algoritmo tem como funcionamento a criação de árvores 

de forma sequencial, tomando como base os resíduos anteriores (boosting) e posteriormente 

realizando a derivada (Gradient) do erro atual do conjunto (ensemble) [12]. 

O algoritmo LightGBM é um algoritmo também baseado em árvore de decisão que é 

projetado para ter as seguintes vantagens sobre o XGBoost: promover maior velocidade de 

treinamento, maior eficiência, menor uso de memória, melhor precisão, suporte de 

aprendizagem paralela, usar GPU e ter maior capacidade para lidar com dados em larga escala 

de múltiplas bases de dados simultâneas. 

Existem duas estratégias diferentes para computar as árvores: level-wise utilizada pelos 

algoritmos XGBoost e Random Forest e leaf-wise utilizada para compor o LightGBM. A 

estratégia level-wise aumenta a árvore nível a nível, cada nó divide os dados priorizando os nós 

mais próximos da raiz da árvore. A estratégia leaf-wise faz crescer a árvore dividindo os dados 

nos nós com a maior mudança de perda. O crescimento em level-wise geralmente é melhor para 

conjuntos de dados menores, ao passo que o leaf-wise tende a ajustar-se em excesso podendo 

levar ao sobre ajuste. O crescimento em leaf-wise tende a se destacar em conjuntos de dados 

maiores, onde é consideravelmente mais rápido do que o crescimento em level-wise, isso se dá 

por conta deste algoritmo ser mais otimizado em relação ao XGBoost [13]. 

Outra característica do LightGBM é que além de utilizar a estratégia leaf-wise, ele usa 

uma abordagem diferente, a aproximação da divisão por meio da construção de histogramas 

dos atributos, dessa forma, o algoritmo não precisa avaliar cada valor único dos atributos para 

calcular a divisão, mas apenas os bins do histograma, que são limitados. Essa abordagem é 

muito mais eficiente para grandes conjuntos de dados, sem afetar adversamente a precisão. 
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3 TRABALHOS RELACIONADOS 

 

Existem muitos trabalhos que tem como objetivo implementar aprendizado de máquina 

e inteligência artificial para a construção de sensores virtuais, nos mais diversos setores 

industriais do mundo. Aqui, o objetivo não é fazer uma revisão de literatura vasta sobre o tema, 

mas sim discutir trabalhos que visam a construção de sensores virtuais por meio de inteligência 

artificial em problemas semelhantes ao investigado neste trabalho. Para isso, foram 

selecionados dois trabalhos principais que se correlacionam com a virtualização de robô 

analisador em indústria de celulose e papel. 

Gomes [14] utilizou metodologias estatísticas para validação de analisadores contínuos 

na indústria de celulose, além da utilização em python de regressão linear, Decision tree e 

Random Forest para a construção de um modelo a fim de predizer variáveis medidas por 

analisadores contínuos, objetivando robustez ao processo com o aumento da confiabilidade das 

medições. O melhor desempenho encontrado foi R2
 igual a 0,623. O autor cita que melhores 

resultados poderiam ser obtidos se não fosse a quantidade baixa de dados disponíveis no 

conjunto de dados (underfitting). 

No trabalho aqui proposto são utilizadas estratégias de predição com o uso de algoritmos 

de inteligência artificial para o problema de predição e alvura, sendo algumas estratégias 

semelhantes às empregadas em Gomes (2021). É esperado, porém que não haja sérios 

problemas (underfitting) relacionados à baixa quantidade de dados disponíveis no conjunto de 

dados, uma vez que o histórico de dados obtidos para a realização do trabalho é de um período 

superior a 8 anos, sendo cada atributo (14 no total) medido em um intervalo médio de 30 

minutos, totalizando mais de 90.000 instâncias (linhas de dados), sugerindo uma quantidade 

satisfatória de dados para a modelagem. A preocupação neste caso é com o sobre ajuste 

(overfitting), onde a estratégia para mitigá-lo é tratar os outliers dos atributos, bem como 

sintonizar os hiperparâmetros dos algoritmos adequadamente. 

 Domingues [15] comparou sensores virtuais analisadores de resistência à tração do 

papel, construídos com a utilização de regressão linear multivariada, regressão não linear por 

mínimos quadrados parciais (PLS) e redes neurais artificiais (RNA). Os modelos desenvolvidos 

apresentaram um baixo desempenho na previsão da variável de interesse quando foram 

empregados o algoritmo de regressão linear multivariada (R2
 igual a 0,358) e regressão não 

linear por mínimos quadrados parciais (R2
 igual a 0,358). Foram utilizadas técnicas de redução 

de dimensionalidade como análise da componente principal (PCA) e ainda assim o resultado 
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obtido foi insatisfatório. Após a utilização das redes neurais artificiais, foi possível atingir um 

R² de 0,89 mostrando ser este o modelo de melhor poder de generalização dentre os utilizados.  

No trabalho aqui proposto, espera-se obter bons resultados com os modelos de regressão 

baseados em inteligência artificial no comparativo com os modelos estatísticos, tendo em vista 

que serão utilizados algoritmos que possuem maior capacidade de combinar resultados dentre 

vários (ensemble), minimizando os erros decorrentes dos modelos individuais. Por este motivo 

optou-se pelo uso dos algoritmos Random Forest, XGBoost e LightGBM. Outro fator 

determinante citado por Domingues [15] é que um dos motivos prováveis que culminaram no 

baixo desempenho dos algoritmos de regressão multivariada e regressão não linear por mínimos 

quadrados parciais possa ter sido a ausência de um dos principais atributos no conjunto de dados 

para a predição de resistência à tração do papel que é a densidade aparente do cavaco. No 

trabalho aqui proposto espera-se que a densidade aparente do cavaco não seja tão relevante para 

o algoritmo de predição de alvura nos estágios da etapa de branqueamento. 
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4 MATERIAIS E MÉTODOS 

 

Os dados foram obtidos com o consentimento dos gestores da fábrica Veracel Celulose 

SA, localizada na cidade de Eunápolis no extremo sul da Bahia. Esta é uma fábrica que iniciou 

sua produção em 2005, em linha única com quatro estágios de branqueamento, com capacidade 

produtiva de cerca de 1,1 milhão de toneladas de celulose seca ao ar por ano. 

Para desenvolver um sensor virtual de um robô analisador de alvura com o objetivo de 

utilizá-lo em uma malha de controle, otimizando dessa forma o consumo de químicos utilizados 

na etapa do processo de fabricação de celulose chamada branqueamento, propõe-se técnicas de 

AM. A primeira fase de construção do algoritmo consiste no pré-processamento que abrange 

as etapas de extração, transformação e carga dos dados. 

Na etapa de extração dos dados, o objetivo principal é preparar os dados de forma a 

serem utilizados na etapa seguinte de extração de padrões. Para isso foi necessário extrair as 

informações de um banco de dados temporal (datalake) da fábrica em questão, disponíveis no 

sistema de gestão de informações da planta (PIMS - Plant Information Management Systems). 

O tempo de varredura da coleta das informações da fábrica é de, em média, 5 segundos, podendo 

variar de acordo com o tempo de resposta de cada atributo. 

Por se tratar de um robô analisador de alvura que realiza uma medição e análise a cada 

30 minutos, o tempo de varredura escolhido para extração dos dados e construção dos datasets 

foi definido como agregação, média de 30 minutos. O período para extração dos dados foi de 8 

anos, de janeiro de 2013 a novembro de 2021, após consenso com a equipe de engenheiros 

químicos e florestais, por conta do dinamismo do processo bioquímico, fruto de constantes 

alterações no principal insumo utilizado no processo (madeira) em função de variações 

climáticas, tipos de solos diferentes por regiões de plantio e tipos de clones das mudas de 

eucalipto. Esse período prolongado de 8 anos de histórico de dados deve ser suficiente para se 

conseguir uma modelagem que abranja grande parte dos cenários possíveis, contribuindo assim 

com o poder de generalização e acurácia dos algoritmos. 

A escolha de quais atributos utilizar para realização das modelagens foi feita por meio 

de entrevistas com os operadores dos cinco turnos que trabalham vinte e quatro horas por dia, 

sete dias por semana e com os engenheiros de processos, que possuem o conhecimento 

operacional de quais variáveis impactam naquela a ser virtualizada, que neste caso é a alvura 

na saída do primeiro estágio de branqueamento.  



37 
 

Foi preciso deslocar duas horas no tempo o atributo a ser virtualizado deslocando as 

instâncias desta variável em 4 (2h), tendo em vista que este se encontra fisicamente na saída do 

reator químico afetado por um tempo de retenção utilizado para maximizar a eficácia da reação 

química, calculado em função da vazão de entrada e do volume do reator. Desta forma ao fazer 

este deslocamento temporal, todas as variáveis se encontraram na mesma base de tempo. Foram 

mapeados como importantes quatorze atributos de entrada e um atributo de saída (alvura), 

conforme mostrado na Tabela 1. 

 

Tabela 1 – Atributos do dataset. 

Tag Descrição Unidade Mínimo Máximo 

3205FI003.PNT Produção do branqueamento tsa/d 0 4000 

3205FC030.MEAS Vazão de vapor t/h 0 30 

3205LI020.PNT Nível torre de massa % 0 100 

3205NC008.MEAS Consistência da massa % 0 15 

3205FC027.MEAS Vazão de massa m³/h 0 1200 

3205QI007.PNT Kappa de entrada - 0 15 

3205FC032.MEAS Vazão H2SO4 m³/h 0 25 

3205FC032LOGA.RO01 Carga de H2SO4 kg/tsa 0 20 

3205FC034.MEAS Vazão de ClO2 m³/h 0 200 

3205FAT-KAPPA-APC-DO.PNT Fator Kappa - 0 1 

3205FC034LOGA.RO01 Carga de ClO2 kg/tsa 0 40 

3205TC028.MEAS Temperatura da massa °C 0 100 

3205QC037.MEAS pH da massa - 0 14 

3205ALVURA5.RO01 Alvura de entrada do reator % 0 100 

3205QI044A.PNT Alvura de saída do reator % 0 100  

Fonte: Próprio autor (2022). 

 

 Após a exportação dos dados do PIMS, se fez necessário o tratamento dos dados através 

do uso de técnicas de filtragem, visualizado os dados de cada atributo através dos gráficos 

boxplot, foram percebidos os outliers e as regiões do gráfico denominadas como primeiro e 

terceiro quartil (Q1 e Q3), tendo entre eles a faixa interquartil (FIQ). Utilizou-se o recurso de 

mapa de calor para validar a correlação entre os atributos e a variável a ser predita, confirmando 

assim a escolha dos atributos baseado na experiência dos operadores e engenheiros de processo. 

Foram removidas as instâncias de cada atributo que continham outliers segundo as 

equações (05), (06) e (07) conforme Cavanha (1996). Após a remoção dos outliers, executou-

se novamente a visualização dos dados através dos gráficos boxplot para cada atributo 

buscando-se analisar o resultado da exclusão. Instâncias contendo dados faltantes, dados 

inconsistentes e dados iguais oriundos de congelamento de sinal devido a falha de comunicação 

entre datalake e sistemas de automação foram removidas para cada atributo.  

 

𝐹𝐼𝑄 = 𝑄3 − 𝑄1          (05) 
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𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 = 𝑄1 − 1,5 ∗  𝐹𝐼𝑄       (06) 

 

𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 = 𝑄3 + 1,5 ∗  𝐹𝐼𝑄       (07) 

 

Utilizou-se novamente o recurso de mapa de calor, ilustrado na Figura 6, para reavaliar 

a correlação entre os atributos e a variável a ser predita, com o intuito de verificar se houve 

melhora nas correlações. O mesmo foi feito para as medidas de momentos de obliquidade e 

curtose. As equações para remoção dos outliers foram: 

 

Figura 6 – Mapa de calor entre variáveis de entrada e variável a ser predita. 

 

Fonte: Próprio autor (2022). 
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 Uma vez tendo os dados extraídos, tratados e pré-processados, foi possível a utilização 

de métodos de aprendizado de máquina para extração de padrões de comportamento do atributo 

a ser predito. Para tal, foram utilizados os seguintes algoritmos de aprendizado de máquina 

supervisionado: Decision Tree, Random Forest, XGBoost e lightGBM. Em seguida utilizaram-

se as métricas de acurácia, Mean Absolute Error (MAE), Mean Squared Error (MSE) e Root 

Mean Squared Error (RMSE) para avaliação e comparação dos resultados obtidos pelos 

algoritmos.  

 Para a aplicação dos algoritmos, inicialmente segmentou-se os dados de forma que o 

atributo a ser predito fosse categorizado como variável de saída (y) e os demais atributos como 

variáveis de entrada (x). Em seguida, após a segmentação, os datasets foram separados em dois 

conjuntos de igual tamanho, sendo o primeiro utilizado para ajuste dos parâmetros (conjunto de 

treino) e o segundo para testar a acurácia e generalização dos modelos em dados não conhecidos 

(conjunto de teste). Também foi utilizado o algoritmo de validação cruzada K-fold nos dados 

de teste, para avaliar o poder de generalização dos algoritmos em dados não conhecidos 

(conjunto de teste), fazendo o uso do coeficiente de determinação (R2) médio do número de 

partições dos dados (folds) escolhidos. 

O método de ajuste de todos os algoritmos utilizados no trabalho se dá com a formação 

de dois datasets após filtragem dos outliers, dataset de treino e de teste, execução do algoritmo 

selecionado sem ajuste de hiperparâmetros (valores padrão) e em seguida de posse dos 

indicadores de acurácia e poder de generalização obtidos nos dados de treinamento, foi 

realizada a sintonia dos hiperparâmetros baseada em tentativa e erro buscando o melhor ajuste 

das métricas obtidas nos dados de treinamento, ficando o dataset de teste exclusivo para medir 

a real performance do modelo, uma vez que estes dados não são conhecidos por ele. 
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5 RESULTADOS E DISCUSSÃO 

 

5.1 Modelagem e sintonia 

 

Os resultados das métricas de acurácia e poder de generalização obtidos a partir dos 

dados de treinamento foram utilizados para ajustes dos hiperparâmetros em todos os algoritmos, 

evitando-se assim o ajuste dos hiperparâmetros baseado nos resultados das métricas obtidas nos 

dados de teste, o que poderia caracterizar vazamento de dados. Como consequência disso os 

modelos tenderiam a super ajustar (overfitting).  

O primeiro algoritmo utilizado para virtualizar a medição de alvura foi o regressor 

Decision Tree Regressor da biblioteca sklearn, fazendo uso dos hiperparâmetros max_depth, 

min_samples_leaf e random_state, sendo este último fixado em 1 para facilitar a 

reprodutibilidade dos diferentes testes submetidos com o uso de diferentes sintonias dos 

hiperparâmetros. 

O hiperparâmetro min_samples_leaf define o número mínimo de amostras necessárias 

para formar um nó folha, o seu uso adequado mitiga a formação de nós folha com valores 

destoantes (outliers), reduzindo as chances do modelo super ajustar (overfitting). Outro 

hiperparâmetro bastante utilizado neste tipo de algoritmo, com o objetivo de limitar o 

crescimento de ramos da árvore (nível de profundidade) é o max_depth. Os resultados dos 

ajustes são apresentados na Tabela 2. 

 

Tabela 2 – Ajuste dos hiperparâmetros max_depth e min_samples_leaf em Decision Tree simples 

dados de treino. 

Algoritmo Hiperparâmetro Valor 
Métricas de acurácia 

Comentários 
MAE MSE RMSE R² 

Decision 

Tree 

min_samples_leaf 1 
0,52758 0,43117 0,65664 0,70697 Underfit 

max_depth 3 

min_samples_leaf 1 
0,00000 0,00000 0,00000 1,00000 Overfit (parâmetros padrão) 

max_depth none 

min_samples_leaf 500 
0,41993 0,29232 0,54067 0,80133 Good fit 

max_depth none 

 

Fonte: Próprio autor (2022). 

 

Utilizando os hiperparâmetros padrão (default) observou-se a ocorrência de overfitting, 

uma vez que os indicadores de acurácia e poder de generalização obtiveram o melhor valor 

possível nos dados de treinamento, o que normalmente provoca resultados ruins em dados não 

conhecidos. Dando prosseguimento na sintonia dos hiperparâmetros, buscou-se fazer uso do 
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parâmetro max_depth com o intuito de reduzir a profundidade da árvore, reduzindo assim sua 

complexidade e consequentemente reduzindo significativamente o overfitting através da 

redução do R², tentando manter o indicador de acurácia RMSE dentro das especificações de 

projeto de 0,3%. 

Com este ajuste realizado, tanto o poder de generalização quanto os indicadores de 

acurácia ficaram muito fora das metas estabelecidas de R² > 80% e RMSE < 0,3%, motivando 

outras tentativas de sintonia. Optou-se na utilização do hiperparâmetro min_samples_leaf que 

também possui a característica de reduzir a complexidade da árvore através do aumento do 

número de amostras para a formação de um nó folha. Essa estratégia levou a um bom ajuste 

porém ainda fora das especificações de projeto fazendo-se necessário a utilização de algoritmos 

com mais recursos. 

 O próximo algoritmo escolhido foi a Random Forest, o qual utiliza média da previsão 

de várias Decision Trees (ensemble) usando aleatoriedade. Inicialmente foi executado a 

Random Forest sem ajustes de hiperparâmetros (valores padrão) e posteriormente foram 

sintonizados o n_estimators e o max_depth obtendo os resultados ilustrados na Tabela 3. 

 

Tabela 3 – Ajuste do hiperparâmetro n_estimators e max_depth em Random Forest dados de treino. 

Algoritmo Hiperparâmetro Valor 
Métricas de acurácia 

Comentários 
MAE MSE RMSE R² 

Random Forest 

n_estimators 100 
0,60082 0,54691 0,73953 0,62831 Underfit 

max_depth 2 

n_estimators 100 
0,05446 0,00696 0,08340 0,99527 Overfit 

max_depth none 

n_estimators 300 
0,41126 0,27425 0,52369 0,81361 Good fit 

max_depth 5 

 

Fonte: Próprio autor (2022). 

 
 Houve uma pequena melhora dos indicadores de acurácia com o uso do algoritmo 

Random Forest, em relação a Decision Tree simples, sendo que o indicador RMSE ainda não 

atingiu a meta estabelecida neste projeto sem ocorrência de sobre ajuste (overfitting). Optou-se 

ainda em utilizar um outro algoritmo para este tipo de problema, o XGBoost, objetivando o 

atingimento da meta do RMSE através da aplicação da técnica de boosting, ou seja, treinamentos 

sucessíveis baseados na derivada do erro (gradient) das árvores anteriores. Foi aplicado o 

algoritmo XGBoost Regressor da biblioteca Sklearn, fazendo uso dos hiperparâmetros 

n_estimators, max_depth e learning_rate para ajuste do modelo, obtendo-se os resultados da 

Tabela 4. 
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Tabela 4 – Ajuste do hiperparâmetro n_estimators, max_depth e learning_rate do XGBoost dados de 

treino. 

Modelo Hiperparâmetro Valor 
Métricas de acurácia 

Comentários 
MAE MSE RMSE R² 

XGBoost 

n_estimators 100 

0,31295 0,16616 0,40763 0,88707      
Parâmetros 

padrão max_depth 3 

learning_rate 0,1 

n_estimators 375 

0,08431 0,01389 0,11787 0,99056 Overfit max_depth 10 

learning_rate 0,05 

n_estimators 85 

0,96908 1,09584 1,04682 0,25525 Underfit max_depth 5 

learning_rate 0,05 

n_estimators 570 

0,19818 0,07030 0,26515 0,95222 Good fit max_depth 5 

learning_rate 0,05 

Fonte: Próprio autor (2022). 

 

Houve uma melhora com o uso do XGBoost em relação ao algoritmo utilizado 

anteriormente, atingindo as metas estabelecidas do projeto para os indicadores RMSE e R². Com 

a sintonia padrão este algoritmo foi mais robusto ao overfitting que os anteriores, porém ao 

permitir uma maior profundidade da árvore, também foi possível verificar a ocorrência deste.  

Buscando-se mais uma vez a melhora do nível de acurácia, utilizou-se o LightGBM, 

desenvolvido pela Microsoft, caracterizado por obter resultados tão bons quanto o XGBoost, 

porém, com um tempo de execução significativamente inferior. O algoritmo LightGBM 

Regressor da biblioteca LightGBM foi implementado fazendo uso dos hiperparâmetros 

n_estimators, max_depth, learning_rate e num_leaves para ajuste do modelo, obtendo-se os 

resultados ilustrados na Tabela 5. 

 

Tabela 5 – Ajuste do hiperparâmetro n_estimators, max_depth, learning_rate e num_leaves do 

LightGBM dados de treino. 

Modelo Hiperparâmetro Valor 
Métricas de acurácia 

Comentários 
MAE MSE RMSE R² 

LightGBM 

num_leaves 31 

0,22027 0,08529 0,29205 0,94203 
Parâmetros 

padrão 
learning_rate 0,1 

n_estimators 100 

max_depth none 

num_leaves 60 

0,08346 0,01281 0,11321 0,99129 Overfit 
learning_rate 0,15 

n_estimators 500 

max_depth 10 

num_leaves 2 

0,64739 0,65622 0,81008 0,55402 Underfit 
learning_rate 0,15 

n_estimators 10 

max_depth 5 

num_leaves 20 

0,19752 0,07009 0,26474 0,95237 Good fit 
learning_rate 0,15 
n_estimators 248 

max_depth 5 

Fonte: Próprio autor (2022). 
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O algoritmo LightGBM obteve um resultado ligeiramente melhor em comparação com 

o algoritmo XGBoost nos indicadores RMSE e R². Assim como o XGBoost, este possuiu uma 

boa robustez ao overfitting com os hiperparâmetros padrão, além de ter sido possível observar 

a ocorrência dele com o aumento da quantidade de nós folha na árvore, o que permite com que 

nós folhas sejam criados com menor número de amostras e assim valores destoantes acabam 

impactando mais o resultado do ensemble. 

A partir dos resultados obtidos de cada algoritmo executado, registrou-se o melhor 

resultado obtido de cada métrica de acurácia, bem como coeficiente de determinação ilustrados 

na Figura 7. É perceptível uma grande melhora na acurácia (redução do erro) e no coeficiente 

de determinação (aumento do R²), ao comparar uma Decision Tree simples para Random Forest 

e a continuidade da melhora dos indicadores com a utilização dos algoritmos LightGBM e 

XGBoost. 

 

Figura 7 – Métricas de acurácia por algoritmos dados de treino. 

 

Fonte: Próprio autor (2022). 

 

5.2 Validação com os dados de testes 

 

Uma vez tendo os resultados das métricas anteriores, foram submetidos os algoritmos 

com os hiperparâmetros do melhor resultado encontrado, ao dataset de teste obtido através do 

split anteriormente realizado. Dessa forma é possível avaliar os modelos em dados não 

conhecidos conforme os resultados apresentados na Tabela 6. 
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 Tabela 6 – Comparativo dos indicadores de acurácia e poder de generalização entre treino e 

teste. 

Modelo Hiperparâmetro Valor Dataset MAE MSE RMSE R² 

Decision Tree 

Regressor 

min_samples_leaf 
max_depth 

500 Treino 0,41993 0,29232 0,54067 0,80133 
none Teste 0,42378 0,29763 0,54555 0,79902 

Random Forest 

Regressor 

n_estimators 300 Treino 0,41126 0,27425 0,52369 0,81361 

max_depth 5 Teste 0,41473 0,27871 0,52793 0,81180 

XGBoost 

Regressor 

n_estimators 570 
Treino 

Teste 

0,19818 

0,21046 

0,07030 

0,08222 

0,26515 

0,28674 

0,95222 

0,94448 
max_depth 5 

learning_rate 0,05 

LightGBM 

Regressor 

n_estimators 248 
Treino 0,19752 0,07009 0,26474 0,95237 

max_depth 5 
learning_rate 0,15 

Teste 0,22127 0,08974 0,29957 0,93940 
num_leaves 20 

Fonte: Próprio autor (2022). 

 

 Conforme ilustrado na Tabela 6 é possível comparar os indicadores de acurácia RMSE e 

coeficiente de determinação R² entre os dados de treinamento e teste. Foi observado em todos 

os algoritmos um decréscimo já esperado no desempenho dos modelos nos dados de teste em 

comparação aos dados de treinamento. Os algoritmos de Decision Tree e Random Forest não 

atenderam à meta do projeto nos dados de teste. Já o XGBoost e o LightGBM conseguiram 

atingir a meta de acurácia com um RMSE menor do que 0,3% e um R² superior a 80%. 

É esperado um pior desempenho dos indicadores nos dados de teste que pode ser 

causado por sobre ajuste (overfitting) ou sub ajuste (underfitting), ocorrido durante o processo 

de treinamento dos algoritmos, bem como em função de oportunidades de melhor filtragem dos 

atributos de entrada do modelo reduzindo assim outliers ainda remanescentes. Mesmo com a 

penalização observada ainda foi possível atingir as metas de RMSE inferior a 0,3% e R² superior 

a 80% nos algoritmos XGBoost Regressor e LightGBM Regressor.  

Os algoritmos Random Forest Regressor e Decision Tree Regressor não conseguiram 

atingir as metas tornando-se inviáveis para uso. Nas Figuras 8, 9, 10 e 11 está ilustrado o 

comparativo do desempenho da predição de cada algoritmo em relação aos dados reais 

fornecidos pelo robô analisador (dados de teste). A sobreposição da previsão de cada algoritmo 

em relação ao conjunto de teste (dados não conhecidos) demonstra de forma visual a 

performance obtida. 
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Figura 8 – Predição x Real - Decision Tree nos dados de teste. 

 

Fonte: Próprio autor (2022). 

 

Figura 9 – Predição x Real – Random Forest nos dados de teste. 

 

Fonte: Próprio autor (2022). 

 

Figura 10 – Predição x Real – XGBoost nos dados de teste. 

 
Fonte: Próprio autor (2022). 
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Figura 11 – Predição x Real – LightGBM nos dados de teste. 

 

Fonte: Próprio autor (2022). 

 

5.3 Validação cruzada K-fold 

 

Para avaliar a capacidade de generalização dos modelos gerados por cada algoritmo 

sobre os dados de teste, utilizou-se o método de validação cruzada denominado K-fold, da 

biblioteca Sklearn. Os parâmetros ajustados durante este processo de validação cruzada foram 

n_split (número de folds), shuffle (embaralhar) definido como verdadeiro para misturar os 

subconjuntos e fixado o random_state (estado de aleatoriedade) para termos repetibilidade dos 

experimentos. Manipulando-se o número de folds, chegou-se aos resultados de cada algoritmo, 

apresentados na Tabela 7. 

 

Tabela 7 – Validação cruzada K-fold nos dados de teste. 

Validação Cruzada K-fold Decision Tree Regressor 

Hiperparâmetro n_splits random_state shuffle n_splits random_state shuffle n_splits random_state shuffle 

Valor 3 7 True 5 7 True 10 7 True 

Decision Tree 
Média 0,77990 0,78924 0,79372 

Desvio Padrão 0,003214 0,00650 0,00718 

Random Forest 
Média 0,80941 0,80816 0,80783 

Desvio Padrão 0,00450 0,00858 0,00936 

XGBoost 
Média 0,93609 0,93742 0,93784 

Desvio Padrão 0,00281 0,00233 0,00246 

LightGBM 
Média 0,9370717 0,93858 0,93913 

Desvio Padrão 0,00254 0,00219 0,00264 

Fonte: Próprio autor (2022). 

 

 É possível observar, avaliando a média dos coeficientes de determinação bem como seu 

desvio padrão, que bons resultados foram geralmente alcançados, com excessão do algoritmo 

Decision Tree que não atingiu o valor mínimo da meta estabelecida R² igual a 80%, conforme 

ilustrado nas figuras 12, 14 e 16. A Random Forest apesar de ter atingido a meta estabelecida 

tomando-se como base a média entre os folds, não conseguiu atingir a meta em alguns deles 

como ilustrado na figura 17, além de ter sido o algoritmo de maior desvio padrão médio. Os 
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algoritmos XGBoost e LightGBM alcançaram desempenho similares, ambos superando a meta 

estabelecida bem como sendo melhores que os algoritmos Descision Tree e Random Forest.   

De posse dos resultados de validação cruzada K-fold com 3, 5 e 10 folds, aparentemente, 

todos os modelos desempenharam bem em relação ao poder de generalização, possuindo desvio 

padrão relativamente baixo, mantendo um coeficiente de determinação alto, conforme 

ilustrados nas figuras 12 a 17. 

 

Figura 12 – K-fold (3 folds) média e desvio padrão R² por algoritmo dados de teste. 

 

Fonte: Próprio autor (2022). 

 

Figura 13 – K-fold (3 folds) coeficiente de determinação (R²) por algoritmo dados de teste. 

 

Fonte: Próprio autor (2022). 
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Figura 14 – K-fold (5 folds) média e desvio padrão R² por algoritmo dados de teste. 

 

Fonte: Próprio autor (2022). 

 

Figura 15 – K-fold (5 folds) coeficiente de determinação (R²) por algoritmo dados de teste. 

 

Fonte: Próprio autor (2022). 

 

Figura 16 – K-fold (10 folds) média e desvio padrão R² por algoritmo dados de teste. 

 

Fonte: Próprio autor (2022). 
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Figura 17 – K-fold (10 folds) coeficiente de determinação (R²) por algoritmo dados de teste. 

 

Fonte: Próprio autor (2022). 
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6 CONCLUSÃO 

 

Respeitar as etapas de pré-processamento, extração de padrões e pós processamento na 

construção do modelo de predição é essencial para obtenção de bons resultados e o emprego de 

técnicas para a tratativa dos dados contidos no dataset pode elevar os indicadores de acurácia e 

poder de generalização, como por exemplo o uso de PCA. 

Com os resultados obtidos através dos indicadores de acurácia e poder de generalização 

pode-se afirmar que é possível utilizar algoritmos de AM, como descritos neste trabalho para a 

construção de um sensor virtual de alvura que permite otimizar o processo de branqueamento. 

Dentre os algoritmos utilizados os que representaram melhor desempenho foram o XGBoost 

Regressor e o LightGBM Regressor, uma vez que ambos atenderam às especificações de 

projeto.  

Torna-se assim viável o emprego deste recurso de utilização de AM de forma abrangente 

nos mais diversos processos da indústria de papel e celulose podendo vir a trazer grandes 

impactos em produção, redução de custos variáveis, com impactos também em meio ambiente 

e segurança. Uma vez tendo obtido êxito no desenvolvimento de um sensor virtual de alvura 

para o primeiro estágio do Branqueamento, torna-se viável criar algoritmos de AM para os 

demais estágios com essa mesma finalidade de predição de alvura.  

O controle de alvura que atualmente é feedback poderá ser melhorado com a 

implementação de novas estratégias antecipativas (feedforward), que somadas com a estratégia 

atual, farão com que ocorram mais ações nos atuadores promovendo uma otimização de 

reagentes químicos, culminando na redução da variabilidade da alvura e consequentemente 

permitindo ao operador trabalhar mais próximo dos limites de especificação, reduzindo assim 

o consumo de químicos, mantendo a qualidade final do produto dentro das especificações. 

Para aumentar a acurácia e poder de generalização pode ser feito uso de novos 

algoritmos de AM, como por exemplo, as redes neurais artificiais. Outros atributos estratégicos 

para o processo de produção de celulose tanto da área de Branqueamento quanto das demais 

áreas também são candidatos a serem virtualizados buscando a otimização de outros processos. 

O aprendizado obtido também poderá ser utilizado no emprego de criação de sensores virtuais 

com o foco em disponibilidade de ativos e predição de falhas. 
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